Opposite angles in a cyclic quadrilateral always sum up to 180º.
Angle A is opposite to angle C.
[tex]\begin{gathered} m\angle A+m\angle C=180º \\ \end{gathered}[/tex]Use the equation above to find the measure of angle C:
[tex]\begin{gathered} m\angle C=180º-m\angle A \\ m\angle C=180º-109º \\ m\angle C=71º \end{gathered}[/tex]As arc DAB is twice as large as measure of angle C:
[tex]\begin{gathered} \text{DAB}=2(m\angle C) \\ \text{DAB}=2(71º) \\ \text{DAB}=142º \end{gathered}[/tex]Then, the degree measure of arc DAB is 142º