Given:
Rank data
To determine the linear regression equation that models the given data, we first note the regression equation:
[tex]y=bx+a[/tex]
where:
b=slope
a=y intercept
Now, we use the process the process below:
Next, we solve for the value of b:
[tex]b=\frac{SP}{SSx}=-\frac{304.5}{47.5}=-6.41[/tex]
Then, we solve for a:
[tex]\begin{gathered} a=Mean\text{ of y-b\lparen Mean of x\rparen} \\ a=62.17-(-6.41)(6.5) \\ Calculate \\ a=103.8=104 \end{gathered}[/tex]
We plug in a=104 and b=-6.41 into y=bx+a:
[tex]\begin{gathered} y=bx+a \\ y=-6.41x+104 \end{gathered}[/tex]
Therefore, the answer is: A
[tex]y=-6.41x+104[/tex]