L′(3,2), M′(0,2), N′(0,–2), O′(3,–2)
Explanation
Step 1
plot the rectangle
Step 2
make the indicated transformations
a)
first reflect this rectangle across the y-axis:
The rule for the reflection around the Y axis is you basically just put a "negative" in front of the X coordinates of each point
so
Let
[tex]\begin{gathered} L(-4,6) \\ M(-1,6) \\ N(-1,2) \\ O(-4,2) \end{gathered}[/tex]then
[tex]\begin{gathered} L(-4,6)\Rightarrow L(-(-4),6)\Rightarrow L1=(4,6) \\ M(-1,6)\Rightarrow M(-(-1),6)\Rightarrow M1=(1,6) \\ N(-1,2)\Rightarrow N(-(-1),2)\Rightarrow N1=(1,2) \\ O(-4,2)\Rightarrow O(-(-4),2)\Rightarrow O1=(4,2) \end{gathered}[/tex]b) Then, translate it down four units and to the left one unit
To translate the point P(x,y) , a units right and b units up, use P'(x+a,y+b)
, if the traslation is down a is negative, if the translation is to the left, b is negative
hence
i) subtract 4 to the y-coordinate
ii)subtract 1 unit from x -axis ,so
[tex](x,y)\Rightarrow(x-1,y-4)[/tex]therefore,
[tex]\begin{gathered} L1(4,6)\Rightarrow L^{\prime}=(4-1,6-4))=L^{\prime}(3,2) \\ M1(1,6)\Rightarrow M^{^{\prime}}=(1-1,6-4))=L^{\prime}(0,2) \\ N1(1,2)\Rightarrow N^{\prime}=(1-1,2-4))=N^{\prime}(0,-2) \\ O1(4,2)\Rightarrow O(4-1,2-4)\Rightarrow O1=O^{\prime}(3,-2) \end{gathered}[/tex]so,
the answer is
L′(3,2), M′(0,2), N′(0,–2), O′(3,–2)
I hope this helps you