[tex]\begin{gathered} 1)\:Tickets:\$10\:\:and\:\$40 \\ 2)\:Price:\:\$25\:generates\:a\:maximum\:profit\:of\:\$1200 \end{gathered}[/tex]
1) In this first part, we need to find the value in which there is a revenue of $750.
[tex]\begin{gathered} P(d)=-2d^2+100d-50 \\ 750=-2d^2+100d-50 \\ -2d^2+100d-50=750 \\ -2d^2+100d-800=0 \\ d_=\frac{-100\pm\sqrt{100^2-4\left(-2\right)\left(-800\right)}}{2\left(-2\right)} \\ d_1=\frac{-100+60}{2\left(-2\right)}=10,\:d_2=\frac{-100-60}{2\left(-2\right)}=40 \\ d_1=10,d_2=40 \end{gathered}[/tex]
Notice that this is a quadratic equation so there are two points, i.e. prices in which the revenue will be $750. So, the tickets may cost $10 or $40 to yield a profit of $750.
2) To find the maximum profit (since this is an equation whose coefficient "a" is negative we need to find the vertex:
[tex]\begin{gathered} V(h,k) \\ h=-\frac{b}{2a} \\ h=\frac{-100}{2(-2)}=\frac{-100}{-4}=25 \\ \\ k=-2d^2+100d-50 \\ k=-2(25)^2+100(25)-50 \\ k=-2(625)+2500-50 \\ k=-1250+2500-50 \\ k=1200 \end{gathered}[/tex]
So, charging $25 generates a maximum profit of $1200
3) Thus, the answers are on the top.