In triangle ABC, m angle A = 41 degrees, m angle B = 32 degrees, and AC = 9 in. What is AB to the nearest tenth of an inch?thank you :)

Given
In a ΔABC, ∠A=41°, ∠B=32°, and AC=9in.
To find the value of AB.
Explanation:
It is given that,
Therefore,
[tex]\begin{gathered} \angle C=180-(41+32) \\ \angle C=180-73 \\ \angle C=107\degree \end{gathered}[/tex]Then,
[tex]\begin{gathered} \frac{\sin B}{AC}=\frac{\sin C}{AB} \\ \frac{\sin32}{9}=\frac{\sin107}{AB} \\ AB=\frac{9\times\sin107}{\sin32} \\ AB=16.2in \end{gathered}[/tex]Hence, the value of AB is 16.2in.