Answer:
16.7 inches
Explanation:
Given:
• Length of an arc = 10 inches
,• The angle subtended at the center = 0.6 radians
We are required to find the length of the radius.
The length of an arc, s is calculated using the formula:
[tex]\begin{gathered} s=\theta r \\ where: \\ \theta=Central\;Angle\text{ \lparen in radians\rparen} \\ r=Radius \end{gathered}[/tex]Substitute the given values:
[tex]10=0.6r[/tex]Divide both sides by 0.6:
[tex]\begin{gathered} \frac{10}{0.6}=\frac{0.6r}{0.6} \\ r\approx16.7\text{ inches} \end{gathered}[/tex]The length of the radius is 16.7 inches (correct to the nearest tenth of an inch).