Match the SLOPE of the line that goes through each pair of points (use the slope formula (y2-yl) / (x2-x1) * 5 undefined 5/2 (4,7) and (6,2) (-3,5) and (-2,0) Ο Ο Ο Ο (4,7) and (4, 2) Ο Ο Ο Ο Ο Ο (3,6) and (-2, 6) This question requires one response per row

Respuesta :

To find the slope, use the formula below:

[tex]\text{slope}=\frac{y2-y1}{x2-x1}[/tex]

A. (4, 7) and (6, 2)

Here, we have:

(x1, y1) ==> (4, 7)

(x2, y2) ==> (6, 2)

[tex]\begin{gathered} \text{slope = }\frac{y2-y1}{x2-x1}=\frac{2-7}{6-4}=\frac{-5}{2} \\ \\ \text{slope =-}\frac{5}{2} \end{gathered}[/tex]

B. (-3, 5) and (-2, 0)

[tex]\begin{gathered} \text{slope = }\frac{y2-y1}{x2-x1}=\frac{0-5}{-2-(-3)}=\frac{0-5}{-2+3}=\frac{-5}{1}=-5 \\ \\ \text{slope = -5} \end{gathered}[/tex]

C. (4, 7) and (4, 2)

[tex]\begin{gathered} \text{slope = }\frac{y2-y1}{x2-x1}=\frac{2-7}{4-4}=\text{ }\frac{-5}{0}=\text{ undefined} \\ \\ \text{The slope here is undefined} \end{gathered}[/tex]

D. (3, 6) and (-2, 6)

[tex]\begin{gathered} \text{slope = }\frac{y2-y1}{x2-x1}=\frac{6-6}{-2-3}=\frac{0}{-5}=0 \\ \\ \text{slope = 0} \end{gathered}[/tex]

RELAXING NOICE
Relax