Respuesta :

Angles 1 and 2 form vertical angles. Vertical angles occur when two straight lines intersect, we get:

The vertical angles theorem tells us that:

[tex]\begin{gathered} a=b \\ c=d \end{gathered}[/tex]

If angles 1 and 2 form vertical angles, then:

[tex]\angle1=\angle2[/tex]

Since:

[tex]\begin{gathered} \angle1=16x-9 \\ \angle2=4x-3 \end{gathered}[/tex]

Then:

[tex]16x-9=4x+3[/tex]

Now, we can solve for x:

[tex]\begin{gathered} 16x-4x=3+9 \\ . \\ 12x=12 \\ . \\ x=\frac{12}{12}=1 \end{gathered}[/tex]

We can find the values of the angles:

[tex]\begin{gathered} \angle1=16\cdot1-9=7 \\ \angle2=4\cdot1+3=7 \end{gathered}[/tex]

Thus, the answer is:

Where:

[tex]\angle1=\angle2=7º[/tex]

The value of the variable is x = 1

Ver imagen LilanS717617
Ver imagen LilanS717617
RELAXING NOICE
Relax