Recall:
[tex]\begin{gathered} \text{ Direct Variation is y = }kx \\ \text{ Inverse Variation is y = }\frac{k}{x} \end{gathered}[/tex]If z varies directly with x, that will be z = kx
If z varies inversely with y, that will be z = k/y
Combining the two equations, we get:
[tex]\text{ z = }\frac{\text{ kx}}{\text{ y}}[/tex]We will be using the first set of values to solve for the constant of variation k.
At x = 2, y = 5 and z = 10,
We get,
[tex]\text{ z = }\frac{\text{ kx}}{\text{ y}}[/tex][tex]\text{ 10 = }\frac{2k}{5}[/tex][tex]\text{ }\frac{\text{10 x 5}}{2}\text{ = }k[/tex][tex]\text{ 25 = k}[/tex]Now apply the constant k with the second values to solve for z.
At x = 3 and y = 15,
We get,
[tex]\text{ z = }\frac{\text{ kx}}{\text{ y}}[/tex][tex]\text{ z = }\frac{\text{ 25x}}{\text{ y}}[/tex][tex]\text{ z = }\frac{\text{ 25 x 3}}{\text{ 1}5}[/tex][tex]\text{ z = }\frac{\text{ 7}5}{\text{ 1}5}[/tex][tex]\text{ z = 5}[/tex]Therefore, z = 5