Remember the following notation:
[tex]a^{n/m}=^n\sqrt[]{a^m}[/tex]Then:
[tex]\sqrt[]{169x^5}=(169x^5)^{1/2}[/tex]Use the following property to simplify the expression:
[tex](a\cdot b)^n=a^n\cdot b^n[/tex]Then:
[tex]\begin{gathered} (169x^5)^{1/2}=169^{1/2}\cdot(x^5)^{1/2} \\ =13x^{5/2} \end{gathered}[/tex]Therefore, the square root of 169x^5 is:
[tex]13x^{5/2}[/tex]