SOLUTION
Step1; Write out the set of data
7, 13, 8, 3, 11, 7, 14, 7, 18, 2
The mean is given as
[tex]\bar{x}=\frac{\text{SUM OF DATA}}{frequency}[/tex][tex]\bar{x}=\frac{2+3+7+7+7+8+11+13+14+18}{10}=\frac{90}{10}=9[/tex]The mean is 9.00
The variance of a set of data is given as
[tex]\sigma^2=\frac{\sum (x-\bar{x})^2}{n}[/tex]consider the table below
[tex]\begin{gathered} \frac{\sigma^2=(2-9)^2+(3-9)^2+(7-9)^2+(7-9)^2+(7-9)^2+(8-9)^2+(11-9)^2+(13-9)+(14-9)^2+(18-9)^2}{10} \\ \end{gathered}[/tex]Hence the variance becomes
[tex]\sigma^2=\frac{49+36+4+4+4+1+4+16+25+81}{10}_{}[/tex][tex]\sigma^2=\frac{224}{10}=22.40[/tex]The variance is 22.40
The standard deviation is given as
[tex]\begin{gathered} \text{std}=\sqrt[]{variance} \\ \sigma=\sqrt[]{22.40}=4.73 \end{gathered}[/tex]