Your question wants us to recognise the values on the last column that is same with the value
[tex]\begin{gathered} ^{_{^{}}}7^{\frac{1}{5\text{ }}}\text{ }\times49^{\frac{7}{5}}\text{ } \\ \text{The equivalent values can be found as follows} \end{gathered}[/tex][tex]7^{\frac{1}{5\text{ }}}\text{ }\times7^{2\text{ }\times\text{ 7/5}}[/tex][tex]\begin{gathered} 7^{\frac{1}{5}}\text{ }\times7^{\frac{14}{5}} \\ \text{The Third value is equivalent } \end{gathered}[/tex][tex]\begin{gathered} 7^{\frac{1+^{14}}{5\text{ }}}=7^{\frac{15}{5\text{ }}\text{ }}=7^{3\text{ }}=\text{ }343 \\ \text{The value on the first column is also equivalent } \end{gathered}[/tex]