Given the points P1(-4, -2) and P2(-9, -1)
(a) Distance between the points is obtained using thr formila:
[tex]d=\sqrt[]{(y_2-y_1)^2+(x_2-x_1)^2}[/tex]Where:
[tex]\begin{gathered} x_1=-4 \\ y_1=-2 \\ x_2_{}=-9 \\ y_2=-1 \end{gathered}[/tex]So,
[tex]\begin{gathered} d=\sqrt[]{(-1-(-2))^2+(-9-(-4))^2} \\ \\ =\sqrt[]{(-1+2))^2+(-9+4))^2} \\ \\ \\ =\sqrt[]{(1)^2+(-5)^2} \\ \\ =\sqrt[]{1+25} \\ \\ =\sqrt[]{26} \end{gathered}[/tex](b) The coordinate of the midpoint is given by the formula:
[tex]undefined[/tex]