How do I write a linear equation for the attendance in terms of the price?

Let:
A = Attendance
p = Price
A linear equation is given by:
[tex]\begin{gathered} A=mp+b \\ Where\colon \\ m=slope \\ b=y-intercept \end{gathered}[/tex]So:
[tex]\begin{gathered} (p,A)=(17,1950) \\ 1950=17m+b_{\text{ }}(1) \\ ----------- \\ (p,A)=(14,2450) \\ 2450=14m+b_{\text{ }}(2) \end{gathered}[/tex]Using elimination to solve the system:
[tex]\begin{gathered} (1)-(2) \\ 1950-2450=17m-14m+b-b \\ -500=3m \\ m=-\frac{500}{3} \end{gathered}[/tex]Replace m into (1):
[tex]\begin{gathered} 1950=-\frac{500}{3}(17)+b \\ b=1950+\frac{8500}{3} \\ b=\frac{14350}{3} \end{gathered}[/tex]Therefore, the linear equation is:
[tex]A=-\frac{500}{3}x+\frac{14350}{3}[/tex]