First let's see the expression for a geometric series:
[tex]\sum ^n_{k\mathop=0}a\cdot r^k[/tex]In this problem r=4 and n=8. a is not given, however, you do have the second term of the series:
[tex]a_1=-1[/tex]This means that, when k=1, the term equals 1:
[tex]a\cdot4^1=-1[/tex]So, we can figure out the value of a from here:
[tex]a=-\frac{1}{4}[/tex]So, the complete geometric series given is:
[tex]\sum ^8_{k\mathop=0}\frac{-1}{4}\cdot4^k=\sum ^8_{k\mathop=0}-4^{k-1}[/tex]And finally you just have to evaluate the sum:
[tex]\sum ^8_{k\mathop=0}-4^{k-1}=-(4^{-1}+4^0+4^1+4^2+4^3+4^4+4^5+4^6+4^7)=-21845.25^{}^{}^{}^{}^{}[/tex]