Construct parametric equations describing the graph of the line passing through the following points.(20, -14) and (12, -12)If y = 1-5, find the parametric equation for x,

ANSWER :
x = -4t - 16
EXPLANATION :
From the problem, we have the points :
[tex](20,-14)\quad and\quad(12,-12)[/tex]Solve for the equation of the line using two-point formula :
[tex]y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]That will be :
[tex]\begin{gathered} y-(-14)=\frac{-12-(-14)}{12-20}(x-20) \\ y+14=\frac{2}{-8}(x-20) \\ y+14=-\frac{1}{4}(x-20) \\ y+14=-\frac{1}{4}x+5 \\ y=-\frac{1}{4}x+5-14 \\ y=-\frac{1}{4}x-9 \end{gathered}[/tex]Next is to substitute the given paremetric equation for y :
[tex]y=t-5[/tex]That will be :
[tex]\begin{gathered} y=-\frac{1}{4}x-9 \\ y=t-5 \\ t-5=-\frac{1}{4}x-9 \\ t-5+9=-\frac{1}{4}x \\ t+4=-\frac{1}{4}x \\ 4t+16=-x \\ x=-4t-16 \end{gathered}[/tex]