Given that radioactive substance is reduced by 35 percent in 15 hours.
Let N(0) be the initial quantity and N(15) be the quantity of substance after 15 hours.
[tex]N(15)=35\text{ \%of N(0)}[/tex][tex]N(15)=\frac{35}{100}\times\text{N(0)}[/tex]We know that the formula to find the quantity of substance after t hours is
[tex]N(t)=N(0)\times(0.5)^{\frac{t}{T}}[/tex]T is the half-life time.
[tex]\text{Substitute }t=15,\text{ N(15)=}\frac{35}{100}N(0),\text{ we get}[/tex][tex]\frac{35}{100}\times N(0)=N(0)\times(0.5)^{\frac{15}{T}}[/tex]Cancel out N(0), we get
[tex]\frac{35}{100}=(0.5)^{\frac{15}{T}}[/tex][tex]0.35=(0.5)^{\frac{15}{T}}[/tex]Taking log on both sides, we get
[tex]In0.35=In(0.5)^{\frac{15}{T}}[/tex][tex]\text{ Use }In(a^n)=n\text{ In(a).}[/tex][tex]In0.35=\frac{15}{T}(In(0.5))^{}[/tex][tex]T=15\times\frac{In\mleft(0.5\mright)}{In(0.35)}[/tex][tex]T=15\times\frac{-0.6931}{-1.0498}=9.9033[/tex][tex]T=9.9=10[/tex]Hence the half-life time is 10 hours.