t = 4.56 sec or 0.44 sec
Explanation:
The equation:
h = 3 + 25t - 5t²
If height = 13 meters, we need to represent h with 13 to get time in seconds
13 = 3 + 25t - 5t²
13 -3 = 25t - 5t²
10 = 2t - 25t²
5t²- 25t + 10 = 0
using quadratic formula:
[tex]\begin{gathered} t\text{ = }\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ a\text{ = 5, b = -25, c = 10} \end{gathered}[/tex][tex]\begin{gathered} t\text{ = }\frac{-(-25)\pm\sqrt[]{(-25)^2-4(5)(10)}}{2(5)} \\ t\text{ = }\frac{25\pm\sqrt[]{625-200}}{10} \end{gathered}[/tex][tex]\begin{gathered} t\text{ = }\frac{25\pm\sqrt[]{425}}{10}\text{ =}\frac{25\pm\sqrt[]{25\times17}}{10} \\ t\text{ = }\frac{25\pm5\sqrt[]{17}}{10}=\frac{5\pm\sqrt[]{17}}{2} \end{gathered}[/tex]
In decimal:
[tex]\begin{gathered} t\text{ = }\frac{5+\sqrt[]{17}}{2}or\frac{5-\sqrt[]{17}}{2} \\ t\text{ = }\frac{9.12}{2}\text{ sec or }\frac{0.88}{2} \\ t\text{ = 4}.56sec\text{ or or 0.44sec} \end{gathered}[/tex]