Respuesta :

Answer: [tex]Domain:\text{ \lparen-}\infty\text{, }\infty)\text{ \lparen option B\rparen}[/tex]

Explanation:

Given:

f(x) = 4x + 12

g(x) = x + 2

To find:

f ∘ g

To determine f ∘ g, we will substiute x in f(x) with function g(x)

[tex]\begin{gathered} f∘g\text{ = \lparen f \circ g\rparen\lparen x\rparen} \\ (f∘g)(x)\text{ = f\lparen g\lparen x\rparen\rparen} \\ \\ f(g(x))\text{ = 4\lparen x + 2\rparen + 12} \\ f(g(x))\text{ = 4x + 8 + 12} \\ f\mleft(g\mleft(x\mright)\mright)\text{ = 4x + 20} \\ \\ f∘g\text{ = 4x + 20} \end{gathered}[/tex]

Domain are the inputs (x values) of a function

The function f ∘ g = 4x + 20 does not have a restriction on the x values. x can take on any number

Hence, the domain of f ∘ g is all real number

[tex]Domain:\text{ \lparen-}\infty\text{, }\infty)\text{ \lparen option B\rparen}[/tex]

RELAXING NOICE
Relax