Respuesta :

[tex] \frac{2}{3} [/tex]

[tex] \frac{2}{3} (9) - x \ \textless \ ? [/tex] 

[tex] \frac{2(9) - x}{3} - 3 \ \textless \ ?[/tex]

[tex] \frac{3(3)}{3} [/tex]

[tex] \frac{9 - 2(x)}{3} [/tex] < ? 

First: Multiply the number 3 on your sides

Second: Multiply again but by negative 1 {-1}

You have to flip your inquality sign since we multiplied from a negative number

2(x) 9 > ? 

Third: Divide on each of your sides by the number 2

x - [tex] \frac{9}{2} [/tex] > ? 

Forth: Add the fraction of [tex] \frac{9}{2} [/tex] to the sides 

-.667 (3.0)  < ? 

Lets just say: 3.0 is a positve while -.667 is a negative 

Finally we get to your result 

Answer: [tex] x \ \textgreater \ \frac{9}{2} [/tex]

Good Luck! 

ACCESS MORE