Let's draw the free body diagram:
Using newton's second law:
[tex]\begin{gathered} \Sigma Fy=0 \\ so: \\ Wcos(30)-N=0 \\ so: \\ mgcos(30)=N \end{gathered}[/tex][tex]\begin{gathered} \Sigma Fx=ma \\ F+mgsin(30)-Ff=ma \\ a=\frac{F+mgsin(30)-Ff}{m} \end{gathered}[/tex]We can solve for a using the values provided by the problem:
[tex]\begin{gathered} a=\frac{159+58.8(9.8)sin(30)-\mu N}{m} \\ a=\frac{159+58.8(9.8)s\imaginaryI n(30)-(0.113)(58.8)(9.8)cos(30)}{58.8} \\ so: \\ a\approx6.645m/s^2 \end{gathered}[/tex]Now, we can use the following kinematic equation:
[tex]\begin{gathered} d=\frac{1}{2}at^2 \\ t^2=\frac{2d}{a} \\ t=\sqrt{\frac{2d}{a}} \\ t=\sqrt{\frac{2(223)}{6.645}} \\ t\approx8.19s \end{gathered}[/tex]Answer:
8.19 seconds