To determine the equation of a line that passes through two given points (x₁,y₁), and (x₂,y₂), we can use the following formula:
[tex]y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1).[/tex]Substituting:
[tex]\begin{gathered} (x_1,y_1)=(4,-8), \\ (x_2,y_2)=(-7,3) \end{gathered}[/tex]in the above formula, we get:
[tex]y-(-8)=\frac{3-(-8)}{-7-4}(x-4).[/tex]Simplifying the above result, we get:
[tex]\begin{gathered} y+8=\frac{11}{-11}(x-4), \\ y+8=-1(x-4), \\ y+8=-x+4. \end{gathered}[/tex]Finally, to determine the y-intercept we can take the above equation to its slope-intercept form (y=mx+b):
[tex]\begin{gathered} y=-x+4-8, \\ y=-x-4. \end{gathered}[/tex]Equation:
[tex]y=-x-4.[/tex]y-intercept:
[tex]-4.[/tex]