According to the Venn diagram, if P(A) = 0.4 and P(B) =0.45, what is P(AB)?A10 B

Given:
There are given that the probability of A and probability of B.
[tex]\begin{gathered} P(A)=0.4 \\ P(B)=0.45 \end{gathered}[/tex]Explanation:
To find the value, we need to use the formula of the probability of A union probability B.
So,
From the formula:
[tex]P(AUB)=P(A)+P(B)-P(A\cap B)[/tex]Where,
[tex]P(A\cap B)=0.10[/tex]Now,
Put all the values into the above formula:
So,
[tex]\begin{gathered} P(AUB)=P(A)+P(B)-P(A\operatorname{\cap}B) \\ P(AUB)=0.4+0.45-0.10 \\ P(AUB)=0.75 \end{gathered}[/tex]Final answer:
Hence, the correct option is B.