Respuesta :

Given:

There are given that the probability of A and probability of B.

[tex]\begin{gathered} P(A)=0.4 \\ P(B)=0.45 \end{gathered}[/tex]

Explanation:

To find the value, we need to use the formula of the probability of A union probability B.

So,

From the formula:

[tex]P(AUB)=P(A)+P(B)-P(A\cap B)[/tex]

Where,

[tex]P(A\cap B)=0.10[/tex]

Now,

Put all the values into the above formula:

So,

[tex]\begin{gathered} P(AUB)=P(A)+P(B)-P(A\operatorname{\cap}B) \\ P(AUB)=0.4+0.45-0.10 \\ P(AUB)=0.75 \end{gathered}[/tex]

Final answer:

Hence, the correct option is B.

RELAXING NOICE
Relax