Let's use the data in the table as coordinates in getting its equation. We get Point A: (0,0) = x1,y1 and Point B: (15,3) = x2,y2.
Let's use the two points to get the equation. Applying the rules in getting the equation in Slope-Intercept Form.
Step 1: Let's determine the slope of the line (m).
[tex]\text{ m = }\frac{y_2-y_1}{x_2-x_1}[/tex][tex]\text{ = }\frac{3\text{ - 0}}{15\text{ - 0}}\text{ = }\frac{3}{15}[/tex][tex]=\text{ }\frac{\frac{3}{3}}{\frac{15}{3}}[/tex][tex]\text{ m = }\frac{1}{5}[/tex]Step 2: Let's determine the y-intercept (b). Substitute m = 1/5 and x,y = 0,0 in y = mx + b.
[tex]\text{ y = mx + b}[/tex][tex]\text{ 0 = (}\frac{1}{5})(0)\text{ + b}[/tex][tex]\text{ b = 0}[/tex]Step 3: Let's complete the equation. Subsitute m = 1/5 and b = 0 in y = mx + b.
[tex]\text{ y = mx + b}[/tex][tex]\text{ y = (}\frac{1}{5})x\text{ + (0)}[/tex][tex]y\text{ = }\frac{1}{5}x[/tex]Therefore, the equation the fits the pattern in the table is y = (1/5)x or y = x/5. W here y = n and x = m.
[tex]\text{The value of m is 5 times the value of n.}[/tex]Let's complete the table.
m solution n
0 0
15 3
30 6
40 = (1/5)(40) = 8 8
50 = (1/5)(50) = 10 10