Since A and B are independents events, we can use the formulas:
[tex]\begin{gathered} P(A\cap B)=P(A)\cdot P(B) \\ P(A\cup B)=P(A)+P(B)-P(A\cap B) \end{gathered}[/tex]So, calculating the probability of A and B, we have:
[tex]\begin{gathered} P(A\cap B)=0.34\cdot0.74_{} \\ P(A\cap B)=0.2516 \end{gathered}[/tex]C is the complementary event of A or B, so we have the following:
[tex]\begin{gathered} P(C)=1-P(A\cup B) \\ P(C)=1-(P(A)+P(B)-P(A\cap B))_{} \\ P(C)=1-(0.34+0.74-0.2516) \\ P(C)=1-0.8284 \\ P(C)=0.1716 \end{gathered}[/tex]So the correct option is A.