see the figure below to better understand the problem
step 1
Find out the resultant vector in the x-coordinate
[tex]R_x=400\cdot\cos 45^o-50\cdot\cos 30^o[/tex][tex]R_x=400\cdot\frac{\sqrt[]{2}}{2}-50\cdot\frac{\sqrt[]{3}}{2}[/tex][tex]\begin{gathered} R_x=200\sqrt[]{2}-25\sqrt[]{3} \\ R_x=239.5 \end{gathered}[/tex]
step 2
Find out the resultant in the y-coordinate
[tex]R_y=400\cdot\sin 45^o+50\cdot\sin 30^o[/tex][tex]R_y=400\cdot\frac{\sqrt[]{2}}{2}+50\cdot\frac{1}{2}[/tex][tex]\begin{gathered} R_y=200\cdot\sqrt[]{2}+25 \\ R_y=307.8 \end{gathered}[/tex]
step 3
Find out the angle of the resultant
[tex]\tan \theta=\frac{R_y}{R_x}[/tex][tex]\tan \theta=\frac{200\cdot\sqrt[]{2}+25}{200\sqrt[]{2}-25\sqrt[]{3}}[/tex]
simplify
[tex]\tan \theta=\frac{25\lbrack8\cdot\sqrt[]{2}+1\rbrack}{25\lbrack8\sqrt[]{2}-\sqrt[]{3\rbrack}}[/tex][tex]\begin{gathered} \tan \theta=\frac{8\cdot\sqrt[]{2}+1}{8\sqrt[]{2}-\sqrt[]{3}} \\ \theta=52.1^o \end{gathered}[/tex]
Find out the resultant vector
[tex]R=\sqrt[]{Ry^2+Rx^2}^{}_{}[/tex][tex]\begin{gathered} R=\sqrt[]{307.8^2+239.5^2} \\ R=390\text{ }\frac{km}{h} \end{gathered}[/tex]
therefore
The resultant vector is 390 km per hour N52.1 E