ANSWER
[tex]\text{ f}(g(x))\text{ = }\frac{3\text{ - x}}{x\text{ - 1}}[/tex]EXPLANATION
We want to find the composite function f(g(x)).
To do this, we simply replace x in f(x) with the g(x) function.
We have that:
[tex]\begin{gathered} f(x)\text{ = 2x - 1} \\ \text{and} \\ g(x)\text{ = }\frac{1}{x\text{ - 1}} \end{gathered}[/tex]Therefore:
[tex]\begin{gathered} f(g(x))\text{ = 2(}\frac{1}{x\text{ - 1}}\text{) - 1} \\ f(g(x))\text{ = }\frac{2}{x\text{ - 1}}\text{ - 1} \\ f(g(x))\text{ = }\frac{2\text{ - (x - 1)}}{x\text{ - 1}}\text{ = }\frac{2\text{ - x + 1}}{x\text{ - 1}} \\ \Rightarrow\text{ f}(g(x))\text{ = }\frac{3\text{ - x}}{x\text{ - 1}} \end{gathered}[/tex]