Respuesta :

[tex]A)F_0d[/tex]

Explanation

If you graph the force on an object as a function of the position of that object, then the area under the curve will equal the work done on that object, so we need to find the area under the function to find the work

Step 1

find the area under the function.

so

Area:

[tex]\text{Area}=rec\tan gle_{green}+triangle_{gren}-triangle_{red}[/tex][tex]\begin{gathered} \text{the area of a rectangle is given by} \\ A_{rec}=lenght\cdot widht \\ \text{and} \\ \text{the area of a triangle is given by:} \\ A_{tr}=\frac{base\cdot height}{2} \end{gathered}[/tex]

so

[tex]\begin{gathered} \text{Area}=rec\tan gle_{green}+triangle_{gren}-triangle_{red} \\ \text{replace} \\ \text{Area}=(F_0\cdot d)+\frac{(F_0\cdot d)}{2}-\frac{(F_0\cdot d)}{2} \\ \text{Area}=(F_0\cdot d) \\ Area=F_0d \end{gathered}[/tex]

therefore, the answer is

[tex]A)F_0d[/tex]

I hope this helps you

Ver imagen EleannaT732021
RELAXING NOICE
Relax