Factor the polynomial function f(x). Then solve the equation f(x)=0.

We can immediately check that f(1) = 0. Then we can divide the polynomial function by (x - 1):
x³ + 13x² + 34x - 48 | x - 1
-x³ + x² | x²
14x² + 34x - 48 | x - 1
-14x² + 14x | x² + 14x
48x - 48 | x - 1
-48x + 48 | x² + 14x + 48
Then we have:
[tex]f(x)=(x-1)\cdot(x^2+14x+48)[/tex]Now, we must find the roots of the quadratic term:
[tex]\begin{gathered} x^2+14x+48=0 \\ x_+=\frac{-14+\sqrt{14^2-4\cdot48}}{2}=-6 \\ x_-=\frac{-14-\sqrt{14^2-4\cdot48}}{2}=-8 \end{gathered}[/tex]Therefore, we have:
[tex]f(x)=(x-1)\cdot(x+6)\cdot(x+8)[/tex]