Respuesta :

EXPLANATION

This is an equilateral triangle, so the area is given by the following relationship:

[tex]\text{Area}_{\text{equilateral}-\text{triangle}}=\frac{\sqrt[]{3}}{4}a^2[/tex]

Where a is the side length:

[tex]\text{Area}_{\text{equilateral}-\text{triangle}}=\frac{\sqrt[]{3}}{4}(26)^2[/tex]

Computing the power:

[tex]\text{Area}_{\text{equilateral}-\text{triangle}}=\frac{\sqrt[]{3}}{4}676[/tex]

Simplifying numbers:

[tex]\text{Area}_{\text{equilateral}-\text{triangle}}=\sqrt[]{3}\frac{676}{4}=169\sqrt[]{3}=292.7ft^2[/tex]

The answer is 292.7 ft^2

RELAXING NOICE
Relax