Respuesta :

We are given the following function:

[tex]f(x)=3x^2+4[/tex]

We are asked to determine the average rate of change on the interval [2, 2 + h]. To do that we will use the following formula:

[tex]r=\frac{f(b)-f(a)}{b-a}[/tex]

in the interval:

[tex]\lbrack a,b\rbrack[/tex]

Therefore, we need to evaluate the function at the points x = 2 and x = 2 + h. Evaluating in x = 2 we get:

[tex]f(2)=3(2)^2+4=16[/tex]

Now we evaluate at x = 2 + h:

[tex]f(2+h)=3(2+h)^2+4[/tex]

Now we solve the square:

[tex]f(2+h)=3(4+4h+h^2)+4[/tex]

Now we apply the distributive property:

[tex]f(2+h)=12+12h+3h^2+4=12h+3h^2+16[/tex]

Now we use the average rate of change formula:

[tex]r=\frac{f(2+h)-f(2)}{(2+h)-(2)}[/tex]

Substituting the values:

[tex]r=\frac{12h+3h^2+16-16}{h}[/tex]

Simplifying:

[tex]r=\frac{12h+3h^2}{h}[/tex]

Now we take common factor on the numerator:

[tex]r=\frac{h(12+3h)}{h}[/tex]

We can cancel out the "h":

[tex]r=12+3h[/tex]

Therefore, the average rate of change is 12 + 3h.

RELAXING NOICE
Relax