The distance between two points is given by:
[tex]d(A,B)=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2_{}}[/tex]
where A(x1,y1) and B(x2,y2).
In this case we are going to use the points given in the problem and the origin, which have coordinates O(0,0). Then the distances are:
[tex]\begin{gathered} d(O,A)=\sqrt[]{(11-0)^2+(-6-0)^2} \\ =\sqrt[]{121+36} \\ =\sqrt[]{157} \\ \approx12.53 \end{gathered}[/tex][tex]\begin{gathered} d(O,B)=\sqrt[]{(-5-0)^2+(15-0)^2} \\ =\sqrt[]{25+225} \\ =\sqrt[]{250} \\ \approx15.81 \end{gathered}[/tex][tex]\begin{gathered} d(O,C)=\sqrt[]{(12-0)^2+(-9-0)^2} \\ =\sqrt[]{144+81} \\ =\sqrt[]{225} \\ =15 \end{gathered}[/tex][tex]\begin{gathered} d(O,D)=\sqrt[]{(10-0)^2+(4-0)^2} \\ =\sqrt[]{100+16} \\ =\sqrt[]{116} \\ \approx10.77 \end{gathered}[/tex][tex]\begin{gathered} d(O,E)=\sqrt[]{(-8-0)^2+(-14-0)^2} \\ =\sqrt[]{64+196} \\ =\sqrt[]{260} \\ \approx16.12 \end{gathered}[/tex]
From the distances above we conclude that:
Less than 15 units:
A
D
Exactly 15 units:
C
Greater than 15 units:
B
E