Finding solutions in an interval for an equation with sine and cosine using double-angle identities

Given:
[tex]\cos (2x)+\sin x=0[/tex][tex]\text{Use }\cos (2x)=1-2\sin ^2x.[/tex][tex]1-2\sin ^2x+\sin x=0[/tex]Multiplying by (-1) on both sides, we get
[tex]2\sin ^2x-\sin x-1=0[/tex][tex]2\sin ^2x-2\sin x+\sin x-1=0[/tex][tex]2\sin ^{}x(\sin x-1)+1(\sin x-1)=0[/tex]Taking out common terms.
[tex](\sin x-1)(2\sin x+1)=0[/tex][tex](\sin x-1)=0,(2\sin x+1)=0[/tex][tex]\sin x=1,\sin x=-\frac{1}{2}[/tex][tex]Use\text{ }\sin (\frac{\pi}{2})=1,\sin (\pi+\frac{\pi}{6})=-\frac{1}{2}.[/tex][tex]\sin x=\sin (\frac{\pi}{2}),\sin x=\sin (\pi+\frac{\pi}{6})[/tex][tex]\sin x=\sin (\frac{\pi}{2}),\sin x=\sin (\frac{7\pi}{6})[/tex][tex]x=\frac{\pi}{2},\frac{7\pi}{6}[/tex]Hence the solution is
[tex]x=\frac{\pi}{2},\frac{7\pi}{6}[/tex]