Respuesta :

[tex]\begin{gathered} x+y=5 \\ -4x-2y=-8 \end{gathered}[/tex]

we solve the system replacing an equation on the other

We solve y from the first equation

[tex]\begin{gathered} x+y=5 \\ y=5-x \end{gathered}[/tex]

now we can replace the value of y on the second equation

[tex]\begin{gathered} -4x-2y=-8 \\ -4x-2(5-x)=-8 \end{gathered}[/tex]

Simplify

[tex]\begin{gathered} -4x-10+2x=-8 \\ -2x-10=-8 \\ -2x=-8+10 \\ -2x=2 \\ x=-\frac{2}{2} \\ \\ x=-1 \end{gathered}[/tex]

the first coordinate of the solution point is x=-1, now we can replace x on any equation to find y

we will use first equation solved for y

[tex]\begin{gathered} y=5-x \\ y=5-(-1) \\ y=6 \end{gathered}[/tex]

the second coordinate is 6

now the solution point is

[tex](-1,6)[/tex]

and the correct line point is W

RELAXING NOICE
Relax