Firts, lets switch x and y
[tex]\begin{gathered} y=3^{\frac{1}{x}}\rightarrow x=3^{\frac{1}{y}} \\ y=10^{\frac{x}{3}}\rightarrow x=10^{\frac{y}{3}} \end{gathered}[/tex]In order to find the inverse, we have to clear y.
To do this with an exponential function, we use a little trick:
Apply log to both sides:
[tex]\begin{gathered} x=3^{\frac{1}{y}}\rightarrow\log (x)=\log (3^{\frac{1}{y}}) \\ x=10^{\frac{y}{3}}\rightarrow\log (x)=\log (10^{\frac{y}{3}}) \end{gathered}[/tex]We do this in order to use the property of logarithms that allow us to turn an exponent into a coefficient.
Mathematically speaking,
[tex]\log (x^y)=y\log (x)[/tex](Note: Remember that log refers to natural logarithm; a logarithm with base e)
Thus,
[tex]\begin{gathered} \log (x)=\frac{1}{y}\log (3) \\ \log (x)=\frac{y}{3}\log (10) \end{gathered}[/tex]Clearing y to get the inverse,
[tex]\begin{gathered} y=\frac{\log (3)}{\log (x)} \\ y=\frac{3\log (x)}{\log (10)} \end{gathered}[/tex]Therefore,
[tex]\begin{gathered} f^{-1}(x)=\frac{\log (3)}{\log (x)} \\ f^{-1}(x)=\frac{3\log (x)}{\log (10)} \end{gathered}[/tex]