Respuesta :

A Right triangle is a triangle that has an angle whose measure is 90 degrees.

The Pythagorean Theorem states that:

[tex]a^2=b^2+c^2[/tex]

Where "a" is the hypotenuse (the longest side of the Right triangle) and "b" and "c" are the legs of the triangle.

Knowing the above, you can check each set:

Set A

[tex]6,7,8[/tex]

Notice that the longest side is 8. Then:

[tex]\begin{gathered} 8^2=6^2+7^2 \\ 64\ne85 \end{gathered}[/tex]

This set couldn't form a Right triangle.

Set B

[tex]9,12,15[/tex]

The longest side is 15. Then:

[tex]\begin{gathered} 15^2=9^2+12^2 \\ 225=225 \end{gathered}[/tex]

This set could form a Right triangle.

Set C

[tex]12,15,20[/tex]

Knowing that the longest side is 20, you get:

[tex]\begin{gathered} 20^2=12^2+15^2 \\ 400\ne369 \end{gathered}[/tex]

This set couldn't form a Right triangle.

Set D

[tex]20,25,30[/tex]

The longest side is 30. Then:

[tex]\begin{gathered} 30^2=20^2+25^2 \\ 900\ne1025 \end{gathered}[/tex]

This set couldn't form a Right triangle.

The answer is: Option B.

RELAXING NOICE
Relax