Round your answers to two significant digits. Write your answer for the angle measure in decimal degrees.

Given the diagram, we have:
[tex]\alpha=180-90-72=18[/tex]Then, we use the law of sine:
[tex]\frac{a}{\sin\alpha}=\frac{c}{\sin c}[/tex]Substitute the values:
[tex]\frac{a}{\sin18}=\frac{9.2}{\sin90}[/tex]And solve for a:
[tex]\begin{gathered} a=\sin18\times\frac{9.2}{\sin90} \\ a=2.8 \end{gathered}[/tex]For b:
[tex]\begin{gathered} \frac{b}{\sin\beta}=\frac{c}{\sin C} \\ \frac{b}{\sin72}=\frac{9.2}{\sin90} \\ b=\sin72\times\frac{9.2}{\sin90} \\ b=8.7 \end{gathered}[/tex]Answer:
[tex]\begin{gathered} \alpha=18° \\ a=2.8 \\ b=8.7 \end{gathered}[/tex]