Step 1: Write out the formula and the special triangle
[tex]\sin \theta=\frac{opp}{hyp}[/tex][tex]\begin{gathered} \text{Where} \\ \theta=\text{ an acute angle in a right-angled triangle} \\ \text{opp = the length of the side of the right-angled triangle opposite but not adjacent to }\theta \\ \text{hyp = the length of the hypotenuse of the right-angled triangle} \end{gathered}[/tex]Step 2 (a): Write out the given values and substitute them into the formula
[tex]\theta=30^0,hyp=24,opp=x[/tex]Therefore,
[tex]\begin{gathered} \sin 30^0=\frac{x}{24} \\ \text{this implies that} \\ \frac{1}{2}=\frac{x}{24} \\ \text{ Cross-multiplying, we have} \\ 2x=24 \\ \text{ Dividing both sides by 2, we have} \\ \frac{2x}{2}=\frac{24}{2} \\ x=12 \end{gathered}[/tex]Step 2(b) Note that for the special triangle in Figure 1
The adjacent of angle 30 degrees is equal √3(the opposite of angle 30 degrees)
Therefore,
[tex]y=\sqrt[]{3}x[/tex]