Determining weather two dung ions are inverse of each other

a)
Functions given:
[tex]f(x)=\frac{3}{x}[/tex][tex]g(x)=\frac{3}{x}[/tex]Procedure
• f(g(x))
Substituing g(x) in the x present in f(x)
[tex]f(g(x))=\frac{3}{(\frac{3}{x})}[/tex]Simplifying:
[tex]f(g(x))=\frac{3\cdot x}{3}[/tex][tex]f(g(x))=x[/tex]• g(f(x))
Substituing f(x) in the x present in g(x)
[tex]g(f(x))=\frac{3}{(\frac{3}{x})}[/tex]Simplifying
[tex]g(f(x))=\frac{3\cdot x}{3}[/tex][tex]g(f(x))=x[/tex]Since f(g(x)) = g(f(x)) = x, the given equation and the computed inverse are really inverse functions.
b)
[tex]f(x)=2x-7[/tex][tex]g(x)=2x+7[/tex]• f(g(x))
Substituing g(x) in the x present in f(x)
[tex]f(g(x))=2\cdot(2x+7)-7[/tex][tex]f(g(x))=4x+14-7[/tex][tex]f(g(x))=4x+7[/tex]• g(f(x))
Substituing f(x) in the x present in g(x)
[tex]g(f(x))=2\cdot(2x-7)+7[/tex][tex]g(f(x))=4x-14+7[/tex][tex]g(f(x))=4x-7[/tex]Then, these functions are NOT inverse.
Answer:
• a) ,f and g are inverses of each other
,• b) f and g are not inverses of each other