Respuesta :

a)

Functions given:

[tex]f(x)=\frac{3}{x}[/tex][tex]g(x)=\frac{3}{x}[/tex]

Procedure

• f(g(x))

Substituing g(x) in the x present in f(x)

[tex]f(g(x))=\frac{3}{(\frac{3}{x})}[/tex]

Simplifying:

[tex]f(g(x))=\frac{3\cdot x}{3}[/tex][tex]f(g(x))=x[/tex]

• g(f(x))

Substituing f(x) in the x present in g(x)

[tex]g(f(x))=\frac{3}{(\frac{3}{x})}[/tex]

Simplifying

[tex]g(f(x))=\frac{3\cdot x}{3}[/tex][tex]g(f(x))=x[/tex]

Since f(g(x)) = g(f(x)) = x, the given equation and the computed inverse are really inverse functions.

b)

[tex]f(x)=2x-7[/tex][tex]g(x)=2x+7[/tex]

• f(g(x))

Substituing g(x) in the x present in f(x)

[tex]f(g(x))=2\cdot(2x+7)-7[/tex][tex]f(g(x))=4x+14-7[/tex][tex]f(g(x))=4x+7[/tex]

• g(f(x))

Substituing f(x) in the x present in g(x)

[tex]g(f(x))=2\cdot(2x-7)+7[/tex][tex]g(f(x))=4x-14+7[/tex][tex]g(f(x))=4x-7[/tex]

Then, these functions are NOT inverse.

Answer:

• a) ,f and g are inverses of each other

,

• b) f and g are not inverses of each other

RELAXING NOICE
Relax