For this exercise you need to remember the following:
1. The sum is the result of an Addition.
2. By definition, given:
[tex]\frac{a}{b}[/tex]Its reciprocal is:
[tex]=\frac{b}{a}[/tex]3. The word "times" indicates a Multiplication.
In this case, let be "n" the number mentioned in the exercise. Its reciprocal is:
[tex]\frac{1}{n}[/tex]Based on the information given in the exercise, you can set up the following equation:
[tex]n+3(\frac{1}{n})=\frac{91}{20}[/tex]Now you must solve for "n":
1. Simplify:
[tex]\begin{gathered} n+\frac{3}{n}=\frac{91}{20} \\ \\ \frac{(n)(n)+3}{n}=\frac{91}{20} \\ \\ \frac{n^2+3}{n}=\frac{91}{20} \\ \\ n^2+3=\frac{91}{20}n \end{gathered}[/tex]2. Make the equation equal to zero:
[tex]n^2-\frac{91}{20}n+3=0[/tex]3. Apply the Quadratic formula. This is:
[tex]n=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]In this case:
[tex]\begin{gathered} a=1 \\ b=-\frac{91}{20}_{} \\ \\ c=3 \end{gathered}[/tex]Substituting values and evaluating, you get:
[tex]\begin{gathered} n=\frac{-(-\frac{91}{20})\pm\sqrt[]{(-\frac{91}{20})^2-2(1)(3)}}{2\cdot1} \\ \\ n_1=\frac{15}{4} \\ \\ n_2=\frac{4}{5} \end{gathered}[/tex]The answer
There are two numbers:
[tex]\begin{gathered} n_1=\frac{15}{4} \\ \\ n_2=\frac{4}{5} \end{gathered}[/tex]