Respuesta :

For this exercise you need to remember the following:

1. The sum is the result of an Addition.

2. By definition, given:

[tex]\frac{a}{b}[/tex]

Its reciprocal is:

[tex]=\frac{b}{a}[/tex]

3. The word "times" indicates a Multiplication.

In this case, let be "n" the number mentioned in the exercise. Its reciprocal is:

[tex]\frac{1}{n}[/tex]

Based on the information given in the exercise, you can set up the following equation:

[tex]n+3(\frac{1}{n})=\frac{91}{20}[/tex]

Now you must solve for "n":

1. Simplify:

[tex]\begin{gathered} n+\frac{3}{n}=\frac{91}{20} \\ \\ \frac{(n)(n)+3}{n}=\frac{91}{20} \\ \\ \frac{n^2+3}{n}=\frac{91}{20} \\ \\ n^2+3=\frac{91}{20}n \end{gathered}[/tex]

2. Make the equation equal to zero:

[tex]n^2-\frac{91}{20}n+3=0[/tex]

3. Apply the Quadratic formula. This is:

[tex]n=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]

In this case:

[tex]\begin{gathered} a=1 \\ b=-\frac{91}{20}_{} \\ \\ c=3 \end{gathered}[/tex]

Substituting values and evaluating, you get:

[tex]\begin{gathered} n=\frac{-(-\frac{91}{20})\pm\sqrt[]{(-\frac{91}{20})^2-2(1)(3)}}{2\cdot1} \\ \\ n_1=\frac{15}{4} \\ \\ n_2=\frac{4}{5} \end{gathered}[/tex]

The answer

There are two numbers:

[tex]\begin{gathered} n_1=\frac{15}{4} \\ \\ n_2=\frac{4}{5} \end{gathered}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico