Respuesta :

Recall that:

[tex]\begin{gathered} \tan ^2x=\sec ^2x-1, \\ \cot ^2x=\frac{1}{\tan ^2x}\text{.} \end{gathered}[/tex]

Substituting the first identity in:

[tex]\cot ^2x(\sec ^2x-1),[/tex]

we get:

[tex]\cot ^2x\cdot\tan ^2x\text{.}[/tex]

Finally, using the second identity we get:

[tex]\frac{1}{\tan^2x}\tan ^2x=1.[/tex]

Answer:

Statement:

[tex]\cot ^2x(\sec ^2x-1)\text{.}[/tex]

Reason: Given.

Statement:

[tex]=\cot ^2x\cdot\tan ^2x\text{.}[/tex]

Reason: Algebra.

Statement:

[tex]=1.[/tex]

Reason: Reciprocal.

RELAXING NOICE
Relax