Respuesta :

Given:

AR=12 and AP=4.6,

Using Pythagorean theorem to find RP.

[tex]RP^2=AR^2+AP^2[/tex]

Substitute AR=12 and AP=4.6, we get

[tex]RP^2=12^2+4.6^2^{}[/tex]

[tex]RP^2=165.16[/tex]

Taking square root on both sides, we get

[tex]RP^{}=\sqrt[]{165.16}=12.8514590611[/tex][tex]RP=12.85[/tex]

Hence the unknown length is 12.85 units.

Given that angle A=90 degrees.

Using sine law.

[tex]\frac{\text{RP}}{\sin A}=\frac{AR}{\sin P}=\frac{AP}{\sin R}[/tex]

Substitute known values, we get

[tex]\frac{12.85}{\sin90^o}=\frac{12}{\sin P}=\frac{4.6}{\sin R}[/tex]

[tex]\text{ Consider }\frac{12.85}{\sin90^o}=\frac{12}{\sin P}\text{.}[/tex][tex]\text{Use }\sin 90^o=1.[/tex]

[tex]\frac{12.85}{1}=\frac{12}{\sin P}\text{.}[/tex][tex]\sin P=\frac{12}{12.85}[/tex]

[tex]\sin P=0.93385214007[/tex][tex]\text{ Use sin }69.04348449=0.93385214007[/tex]

[tex]\sin P=\sin 69.04348449[/tex][tex]P=69[/tex]

Hence we get

[tex]m\angle P=69^o[/tex]

Using the triangle sum property, we get

[tex]m\angle P+m\angle A+m\angle R=180^o[/tex]

Substitute known values, we get

[tex]69^o+90^o+m\angle R=180^o[/tex]

[tex]159^o+m\angle R=180^o[/tex]

[tex]m\angle R=180^o-159^o[/tex]

[tex]m\angle R=21^o[/tex]

Hence we get unknown angels

[tex]m\angle R=21^o[/tex]

[tex]m\angle P=69^o[/tex]

The unknown length is 12.85 units.

RELAXING NOICE
Relax