Respuesta :

Given:

[tex]\frac{\ln e^7-3\ln e^{\frac{1}{2}}+\ln 1}{10-\frac{1}{2}\ln e^{\frac{2}{3}}}[/tex]

Simplify the expression,

[tex]\begin{gathered} \frac{\ln e^7-3\ln e^{\frac{1}{2}}+\ln1}{10-\frac{1}{2}\ln e^{\frac{2}{3}}} \\ \text{ Use the rule:ln}^{}a^b_{}=b\ln a \\ =\frac{7\ln e-3(\frac{1}{2})\ln e^{}+\ln 1}{10-\frac{1}{2}(\frac{2}{3})\ln e^{}} \\ =\frac{7-\frac{3}{2}+0}{10-\frac{1}{3}}\ldots\text{. Since }\ln \text{e=1,}\ln \text{1=0} \\ =\frac{\frac{11}{2}}{\frac{29}{3}} \\ =\frac{11}{2}\cdot\frac{3}{29} \\ =\frac{33}{58} \end{gathered}[/tex]

Answer:

[tex]\frac{\ln e^7-3\ln e^{\frac{1}{2}}+\ln1}{10-\frac{1}{2}\ln e^{\frac{2}{3}}}=\frac{33}{58}=0.57[/tex]

RELAXING NOICE
Relax