Hello, is it possible to show me the steps to solve this answer? I am unsure as to why I got it wrong.

Given:
[tex](\frac{5e^{-3}}{2e^{18}e^{-13}})^{-4}[/tex]Required:
We need to simplify the given expression.
Explanation:
[tex]Use\text{ }(\frac{a}{b})^n=\frac{a^n}{b^n}.[/tex][tex](\frac{5e^{-3}}{2e^{18}e^{-13}})^{-4}=\frac{(5e^{-3})^{-4}}{(2e^{18}e^{-13})^{-4}}[/tex][tex]Use\text{ }(ab)^n=a^nb^n,\text{ and }(a^n)^m=a^{n\times m}.[/tex][tex](\frac{5e^{-3}}{2e^{18}e^{-13}})^{-4}=\frac{5^{-4}e^{-3\times(-4)}}{{2^{-4}e^{18\times(-4)}e^{-13\times(-4)}}}[/tex][tex](\frac{5e^{-3}}{2e^{18}e^{-13}})^{-4}=\frac{5^{-4}e^{12}}{{2^{-4}e^{-72}e^{52}}}[/tex][tex]Use\text{ }a^na^m=a^{n+m}.[/tex][tex](\frac{5e^{-3}}{2e^{18}e^{-13}})^{-4}=\frac{5^{-4}e^{12}}{{2^{-4}e^{-72+52}}}[/tex][tex](\frac{5e^{-3}}{2e^{18}e^{-13}})^{-4}=\frac{5^{-4}e^{12}}{{2^{-4}e^{-20}}}[/tex][tex]Use\text{ }\frac{1}{a^{-n}}=a^n\text{ and }a^{-n}=\frac{1}{a^n}.[/tex][tex](\frac{5e^{-3}}{2e^{18}e^{-13}})^{-4}=\frac{2^4e^{12}e^{20}}{{5^4}}[/tex][tex](\frac{5e^{-3}}{2e^{18}e^{-13}})^{-4}=\frac{2^4e^{12+20}}{{5^4}}[/tex][tex](\frac{5e^{-3}}{2e^{18}e^{-13}})^{-4}=\frac{2^4e^{32}}{{5^4}}[/tex][tex](\frac{5e^{-3}}{2e^{18}e^{-13}})^{-4}=\frac{16e^{32}}{625}[/tex]Final answer:
[tex](\frac{5e^{-3}}{2e^{18}e^{-13}})^{-4}=\frac{16e^{32}}{625}[/tex]Alternate method:
[tex](\frac{5e^{-3}}{2e^{18}e^{-13}})^{-4}=(\frac{2e^{18}e^{-13}}{5e^{-3}})^4[/tex][tex](\frac{5e^{-3}}{2e^{18}e^{-13}})^{-4}=(\frac{2e^{18-13}}{5e^{-3}})^4[/tex][tex](\frac{5e^{-3}}{2e^{18}e^{-13}})^{-4}=(\frac{2e^5}{5e^{-3}})^4[/tex][tex](\frac{5e^{-3}}{2e^{18}e^{-13}})^{-4}=(\frac{2e^5e^3}{5})^4[/tex][tex](\frac{5e^{-3}}{2e^{18}e^{-13}})^{-4}=(\frac{2e^{5+3}}{5})^4[/tex][tex](\frac{5e^{-3}}{2e^{18}e^{-13}})^{-4}=(\frac{2e^8}{5})^4[/tex]Final answer:
[tex](\frac{5e^{-3}}{2e^{18}e^{-13}})^{-4}=\frac{16e^{32}}{625}[/tex]