Explanation
Part A
The lateral area is the sum of the area of the lateral sides. One of the side can be seen below
The height of the triangle becomes
[tex]\begin{gathered} h^2=7^2-3^2 \\ h^2=49-9 \\ h^2=40 \\ h=\sqrt{40} \\ h=\sqrt{4\times10} \\ h=2\sqrt{10} \end{gathered}[/tex]
The area of the triangle becomes;
[tex]Area=\frac{1}{2}\times base\times height=\frac{1}{2}\times6\times2\sqrt{10}=6\sqrt{10}[/tex]
The lateral area then becomes 5 times the area of the triangle
[tex]lateral\text{ area =}5\times6\sqrt{10}=94.87[/tex]
Answer: 94.87 square inches
Part B
Given the apothem, the area of the pentagonal base is
[tex]Area\text{ of pentagon}=\frac{1}{2}\times p\times a[/tex]
where 'p' is the perimeter of the pentagon and 'a' is the apothem. Therefore;
[tex]\begin{gathered} Area=\frac{1}{2}\times(5\times6)\times4.1 \\ =61.5\text{ square inches} \end{gathered}[/tex]
Therefore, the total area becomes
[tex]\begin{gathered} total\text{ area = lateral area + base area} \\ total\text{ area=30}\sqrt{10}+61.5 \\ =156.37 \end{gathered}[/tex]
Answer: 156.37 square inches