Respuesta :
Using a mean and standard deviation calculator we can see that
[tex]\text{ the sample mean }\bar{x}=6.75[/tex][tex]\text{ the sample standard deviation }s=1.8184[/tex]We now calculate the standard error
[tex]\begin{gathered} \text{ standard error }=\frac{s}{\sqrt[]{n}} \\ \text{Where} \\ s=\text{ the sample standard deviation} \\ n=\text{ the sample size} \end{gathered}[/tex]In this case,
n = 32,
[tex]\text{standard error = }\frac{1.8184}{\sqrt[\square]{32}}=\text{ 0.3215}[/tex]We now calculate the critical probability p*
[tex]\text{ critical probability }=1-\frac{\alpha}{2}[/tex][tex]\begin{gathered} \alpha=0.05 \\ \text{ Therefore} \\ \text{ critical probability }=1-\frac{0.05}{2}=0.975 \end{gathered}[/tex]Next, we find the degree of freedom df
[tex]df=32-1=31[/tex]We can now find the critical value. The critical value is the t value having degrees of freedom equal to df and a cumulative probability equal to the critical probability (p*).
Using a t-score calculator, we find that the critical value is 2.040
We will now find the margin of error (ME)
[tex]\begin{gathered} ME\text{ = critical value x stansard error} \\ ME\text{ = }2.040\text{ x }0.3215\text{ = 0.6559} \end{gathered}[/tex]confidence interval is = mean
[tex]\text{confidence interval = mean}\pm\text{ margin of error= }6.75\pm0.6559\text{ }[/tex]Confidence interval is (6,75-0.6559, 6,75+0.6559)
Confidence interval is (6.0941, 7.4059).
This means that the professor is 95% certain that the average hour of sleep of each student falls within the interval (6.0941, 7.4059).
