Respuesta :

If f is a differentiable function, and x_0 is a critical point (local maximum or minimum), then f ' (x_0)=0.

To find the values of x_0 such that f ' (x_0)=0, differentiate the function:

[tex]f^{\prime}(x)=\frac{d}{dx}f(x)=\frac{d}{dx}(e^{-2x}+2x)=-2e^{-2x}+2[/tex]

Assume that f ' (x_0)=0:

[tex]f^{\prime}(x_0)=-2e^{-2x_0}+2=0_{}[/tex]

Isolate x_0:

[tex]x_0=-\frac{1}{2}\ln (1)[/tex]

Since the natural logarithm of 1 is 0, then:

[tex]x_0=0[/tex]

To check whether x_0 is a local maximum or a minimum, find the second derivative of f:

[tex]f^{\prime\prime}(x)=\frac{d}{dx}f^{\prime}(x)=\frac{d}{dx}(-2e^{-2x}+2)=4e^{-2x}[/tex]

Evaluate f '' (x) at x=0:

[tex]f^{\prime}^{\prime}(0)=4e^{-2(0)}=4e^0=4\cdot1=4[/tex]

Since f ' (0)=0 and f '' (0)=4>0, then 0 is a local minimum value for the function f.

RELAXING NOICE
Relax