Answer:
[tex]2\sqrt{18}+6 \ in[/tex]
Step-by-step explanation:
As ABC is an isosceles triangle, the segment CD cuts to AB in two equal parts. Then, AD=DB=3 in. Now, using Pitagoras Theorem we have that:
[tex]CD^2+DB^2 = BC^2[/tex]
[tex]3^2+3^2 = BC^2[/tex]
[tex]BC = \sqrt{3^2+3^2}[/tex]
[tex]BC = \sqrt{9+9}[/tex]
[tex]BC = \sqrt{9+9}[/tex]
[tex]BC = \sqrt{18}=AC[/tex].
Now, the perimeter is the sum of the three sides of the triangle, then
[tex] perimeter = AC+BC+AB = \sqrt{18}+\sqrt{18}+6 = 2\sqrt{18}+6 \ in[/tex].