2shwin5
contestada

Need Help
In isosceles ΔABC, AC = BC, AB = 6 in,
CD ⊥ AB, and CD = 3 in. Find the perimeter of the isosceles triangle.

Need Help In isosceles ΔABC AC BC AB 6 in CD AB and CD 3 in Find the perimeter of the isosceles triangle class=

Respuesta :

2x+6=y
triangle ADC=x+3+3=y
triangle CBD=x+3+3=y
this is not possible until u give perimeter 

Answer:

[tex]2\sqrt{18}+6 \ in[/tex]

Step-by-step explanation:

As ABC is an isosceles triangle, the segment CD cuts to AB in two equal parts. Then, AD=DB=3 in. Now, using Pitagoras Theorem we have that:

[tex]CD^2+DB^2 = BC^2[/tex]

[tex]3^2+3^2 = BC^2[/tex]

[tex]BC = \sqrt{3^2+3^2}[/tex]

[tex]BC = \sqrt{9+9}[/tex]

[tex]BC = \sqrt{9+9}[/tex]

[tex]BC = \sqrt{18}=AC[/tex].

Now, the perimeter is the sum of the three sides of the triangle, then

[tex] perimeter = AC+BC+AB = \sqrt{18}+\sqrt{18}+6 = 2\sqrt{18}+6 \ in[/tex].

ACCESS MORE