If lines l, m, and n are parallel, and AB = 2, AC = 8, and EF = 5, what is the length of DE?

Consider the theorem that when a pair of transversals intersect more than two parallel lines, then the ratio of the corresponding segments are always equal.
According to the given problem,
[tex]\begin{gathered} AB=2 \\ AC=8 \\ EF=5 \end{gathered}[/tex]In the given figure, lines ABC and DEF intersect the set of parallel lines 'l', 'm', and 'n'.
Applying the above theorem,
[tex]\frac{AB}{AC}=\frac{DE}{DF}[/tex]The expression can be resolved as,
[tex]\frac{AB}{AC}=\frac{DE}{DE+EF}[/tex]Substitute the values,
[tex]\begin{gathered} \frac{2}{8}=\frac{DE}{DE+5} \\ \frac{1}{4}=\frac{DE}{DE+5} \end{gathered}[/tex]Transpose the terms to simplify,
[tex]\begin{gathered} DE+5=4\cdot DE \\ 4DE-DE=5 \\ 3DE=5 \\ DE=\frac{5}{3} \end{gathered}[/tex]Thus, the value of the segment DE is 5/3 units.