Answer:
294.5 square meters.
Explanation:
The shaded region comprises of a sector and a triangle.
[tex]\begin{gathered} \text{Area}=\text{Area of sector+Area of Triangle} \\ =(\frac{\theta}{360\degree}\times\pi r^2)+(\frac{1}{2}r^2\sin \alpha) \end{gathered}[/tex]The central angle of the major sector,θ = 360 - 130 = 230 degrees
Therefore:
[tex]\begin{gathered} A=(\frac{230\degree}{360\degree}\times\pi\times11.1^2)+(\frac{1}{2}\times11.1^2\times\sin 130\degree) \\ =247.298+47.192 \\ =294.49 \\ \approx294.5m^2 \end{gathered}[/tex]The area of the shaded region is 294.5 square meters (to the nearest tenth).